Inflammatory bowel diseases (IBDs) are chronic, relapsing, and inflammatory disorders of the gastrointestinal tract characterized by abnormal immune responses. Recently, STING has emerged as a promising therapeutic target for various autoinflammatory diseases. However, few STING-selective small molecules have been investigated as novel strategies for IBD. In this study, we sought to examine the effects of PROTAC-based STING degrader SP23 on acute colitis and explore its underlying mechanism. SP23 treatment notably alleviates dextran sulfate sodium (DSS)-induced colitis. Pharmacological degradation of STING significantly reduced the production of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, and inhibited macrophage polarization towards the M1 type. Furthermore, SP23 administration decreased the loss of tight junction proteins, including ZO-1, occludin, and claudin-1, and downregulated STING and NLRP3 signaling pathways in intestinal inflammation. In vitro, STING activated NLRP3 inflammasome-mediated pyroptosis in intestinal epithelial cells, which could be abrogated by SP23 and STING siRNA intervention. In conclusion, these findings provide new evidence for STING as a novel therapeutic target for IBD, and reveal that hyperactivation of STING could exaggerate colitis by inducing NLRP3/Caspase-1/GSDMD axis mediated intestinal epithelial cells pyroptosis.
Keywords: Inflammatory bowel disease; M1 macrophage; NLRP3; STING PROTAC degrader; Tight junction protein.
Copyright © 2024 Elsevier B.V. All rights reserved.