Enhanced photocatalytic CO2 conversion over 0D/2D CsPbBr3/BiOCl S-scheme heterojunction via boosting charge separation

Dalton Trans. 2024 Sep 18;53(36):15330-15337. doi: 10.1039/d4dt02322f.

Abstract

The stable contact of heterogeneous interfaces and the substantial exposure of active sites are crucial for enhancing the photocatalytic performance of semiconductor catalysts. However, most reported two-dimensional (2D)/2D CsPbBr3 and BiOCl heterostructures are fabricated using electrostatic self-assembly methods, which exhibit significant deficiencies in precise interface quality control and effective active site exposure. In this study, we fabricate a zero-dimensional (0D)/2D CsPbBr3/BiOCl heterojunction via a two-step calcination method, achieving an efficient direct S-scheme configuration. Optimizing interfacial contact and band alignment between CsPbBr3 quantum dots and BiOCl nanosheets enhances cross-plane charge transfer, promoting superior charge separation. This 0D/2D CsPbBr3/BiOCl heterojunction exhibits enhanced carrier mobility and high conversion rates without cocatalysts or sacrificial agents. The mechanism underlying the accelerated S-scheme charge transfer is comprehensively elucidated through a combination of analytical techniques and density functional theory (DFT) calculations. This study offers a novel approach for managing charge carrier segregation and mobility in CO2 reduction photocatalysts.