The recent interstellar detection of individual polycyclic aromatic hydrocarbons (PAHs) in the dense molecular cloud TMC-1 brings interest in related species that could be present in this astronomical environment. These detections, that include pure PAHs and their cyano-derivative counterparts, were performed through the interplay between laboratory rotational spectroscopy experiments and radioastronomical observations. Here, we present the laboratory rotational spectroscopic study of the five cyano-derivatives of the PAH fluorene (C13H10). The samples for these five species were synthetized in the laboratory and then characterized in the gas phase using a chirped-pulse Fourier-transform microwave spectrometer operating between 2 and 12 GHz. The analysis of the rotational spectra allowed us to derive accurate molecular constants for the five isomers used to obtain frequency predictions that enable astronomical searches of these molecules in the interstellar medium.