Stress Hormones: Unveiling the Role in Accelerated Cellular Senescence

Aging Dis. 2024 Aug 18. doi: 10.14336/AD.2024.0262. Online ahead of print.

Abstract

Cellular senescence is a complex process involving multiple factors, such as genetics, environment, and behavior. However, recent studies have shown that stress also plays a crucial role in inducing cellular senescence. Stress can affect cellular function and structure through various pathways, leading to accelerated aging. Exposure to stressful conditions can alter the neuroendocrine system, activate the hypothalamus-pituitary-adrenal axis and sympathetic adrenal medullary axis, and release cortisol and catecholamines, causing mitochondrial dysfunction, generating excessive reactive oxygen species, and inducing oxidative stress, DNA damage, and inflammatory reactions, ultimately resulting in accelerated cellular senescence. The process of stress-induced cellular senescence has been implicated in a number of chronic diseases, including age-related macular degeneration, chronic kidney disease, type 2 diabetes, cardiovascular disease and obstructive sleep apnea. In this review, we integrate recent progress research progress in our understanding of the mechanisms of stress-induced cellular senescence and discuss its underlying mechanisms from the perspective of stress hormones. We review potential therapeutic targets for stress-induced premature senescence and discuss the advantages and limitations of existing pharmacological agents capable of ameliorating stress-induced premature senescence.

Publication types

  • Review