The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Keywords: Chlorine species; Inhibitory effect; Phototransformation; Polypropylene microplastics; Trichloroisocyanuric acid.
Copyright © 2024 Elsevier B.V. All rights reserved.