Under stress, Purkinje cells (PCs) undergo a variety of reactive morphological changes. These can include swellings of neuronal processes. While axonal swellings, "torpedoes", have been well-studied, dendritic swellings (DS) have not been the centerpiece of study. Surprisingly little is known about their frequency or relationship to other morphological changes in degenerating PCs. Leveraging a large brain bank, we (1) examined the morphology of DS, (2) quantified DS, and (2) examined correlations between counts of DS versus 16 other PC morphological changes in a broad range of cerebellar degenerative disorders. There were 159 brains - 100 essential tremor (ET), 13 Friedreich's ataxia, and 46 spinocerebellar ataxia (SCA) (14 SCA1, 7 SCA2, 13 SCA3, 5 SCA6, 5 SCA7, and 2 SCA8). DS were a feature of PCs across all these disorders, with varying morphologies and changes elsewhere in the dendritic arbor. On Luxol fast blue/hematoxylin and eosin-stained sections, the median number of DS per PC ranged from 0.001 in ET to 0.025 in SCA8. Bielschowsky-stained sections yielded higher counts, from 0.003 in ET to 0.042 in SCA6. Torpedo counts exceeded DS counts by one order of magnitude. DS counts were more robustly correlated with torpedo counts than with counts for any of the other PC morphological changes. In summary, DS ranged in prevalence across cerebellar degenerative disorders, from 1/1,000 to 42/1,000 PCs. Across disorders of cerebellar degeneration, these swellings of the dendritic compartment were most robustly correlated with swellings of the axonal compartment, suggesting a similar type of cellular response to duress.
Keywords: Cerebellum; Dendritic swellings; Essential tremor; Neurodegeneration; Spinocerebellar ataxia; Torpedoes.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.