The kidney is poised to defend against development of metabolic alkalosis through non-adaptive mechanisms in the proximal nephron and adaptive processes in the distal nephron. Despite a prodigious capacity to excrete base, metabolic alkalosis is the most common acid-base disturbance in hospitalized patients. Development of this disorder requires pathophysiologic changes leading to generation of new HCO3- combined with an augmentation in the capacity of the kidney to reclaim filtered HCO3-. The initial approach to these patients is careful assessment of effective arterial blood volume focusing on the physical examination and urine electrolytes. Identifying the mechanisms by which the kidney's ability to correct alkalosis are perturbed provides an understanding of the clinical approach to differential diagnosis and appropriate treatment. While metabolic alkalosis is frequently not dangerous, in certain settings, metabolic alkalosis may contribute to mortality and should be aggressively managed.
Keywords: cystic fibrosis transmembrane conductance regulator; metabolic alkalosis; pendrin.
© The Author(s) 2024. Published by Oxford University Press on behalf of the ERA.