Aims: Primary sclerosing cholangitis (PSC) is a cholestatic liver disease that affects the hepatic bile ducts, leading to hepatic inflammation and fibrosis. PSC can also impact skeletal muscle through the muscle-liver axis, resulting in sarcopenia, a complication characterized by a generalized loss of muscle mass and strength. The underlying mechanisms and therapy of PSC-induced sarcopenia are not well understood, but one potential regulator is the transcription factor forkhead box protein O1 (FOXO1), which is involved in the ubiquitin proteasome system. Thus, the aim of this study is to assess the pharmacological potential of FOXO1 inhibition for treating PSC-induced sarcopenia.
Materials and methods: To establish diet-induced PSC model, we provided mice with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 4 weeks. Mice were intramuscularly injected with AS1842856 (AS), a FOXO1 inhibitor, at a dose of 3.5 mg/kg twice a week for last two weeks. C2C12 myotubes with cholic acid (CA) or deoxycholic acid (DCA) were treated with AS.
Key findings: We observed a decrease in muscle size and performance in DDC-fed mice with upregulated expression of FOXO1 and E3 ligases such as ATROGIN1 and MuRF1. We found that myotube diameter and MyHC protein level were decreased by CA or DCA in C2C12 myotubes, but treatment of AS reversed these reductions. We observed that intramuscular injection of AS effectively mitigates DDC diet-induced sarcopenia in a rodent PSC model.
Significance: Our study suggests that a FOXO1 inhibitor could be a potential leading therapeutic drug for relieving PSC-induced sarcopenia.
Keywords: E3 ligase; Forkhead box protein O1; Primary sclerosing cholangitis; Sarcopenia.
Copyright © 2024 Elsevier Inc. All rights reserved.