Studying the stoichiometric characteristics of soil nutrients aids in evaluating soil quality and deciphering the coupling of soil nutrients. The influence of migratory bird activities on the dynamics of wetland soil nutrients and their stoichiometric remains unclear. We classified the central, peripheral and adjacent natural grassy areas as severe, mild, and no bird activity (control), respectively, in Donghu Carex meadow, a representative migratory bird habitat in Poyang Lake, based on flock characteristics and initial surveys. We analyzed the contents and stoichio-metry of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) across soil depths of 0-100 cm under different intensities of migratory bird activities. The results showed that the activities of migratory birds significantly impacted nutrient levels exclusively within 0-30 cm soil. Mild activities markedly enhanced SOC and TN across 0-30 cm soil, while both mild and severe activities significantly raised TP within the same depth. For the 0-100 cm soil profiles, soil C/N ratios were 10.0, 10.8, and 9.9, C/P ratios were 23.5, 30.0, and 22.7, and N/P ratios were 2.3, 2.7, and 2.3 under no, mild, and severe bird activities, respectively. Further, mild activities of migratory birds significantly increased soil C/N, C/P and N/P ratios only within the 0-30 cm depth, while the stoichiometric ratios of all soil layer had no significant difference under severe bird activity. Soil stoichiometric ratios strongly correlated with physicochemical properties. SOC, TN, and TP primarily mediated the effects of migratory bird activity on soil carbon, nitrogen, and phosphorus stoichiometric ratios in Poyang Lake wetland. In conclusion, the influence of migratory bird activity on the stoichiometric ratios of soil carbon, nitrogen, and phosphorus in Poyang Lake wetland exhibited depth threshold (approximately 30 cm), aligning with the "Intermediate Distur-bance Hypothesis". These findings could provide a new perspective for the protection of wetlands and migratory birds.
研究土壤养分生态化学计量特征有助于判断土壤质量和认识养分之间的耦合关系。在湿地系统,关于候鸟活动对湿地土壤养分及其化学计量关系的影响仍缺乏了解。本研究选择典型候鸟栖息分布区域——鄱阳湖东湖苔草洲滩,基于候鸟大集群性特征和前期调查,将候鸟集群中心区域、边缘区域和临近天然草滩作为重度、轻度和无候鸟活动(对照)区,分析不同候鸟活动强度下0~100 cm剖面土壤有机碳(SOC)、全氮(TN)、全磷(TP)及其化学计量比。结果表明: 候鸟活动仅对0~30 cm土壤养分含量影响显著,候鸟轻度活动显著增加了0~30 cm土层的SOC和TN,候鸟轻度和重度活动均显著增加了0~30 cm土层的TP;无、轻度和重度候鸟活动下0~100 cm剖面土壤C/N分别为10.0、10.8和9.9,C/P分别为23.5、30.0和22.7,N/P分别为2.3、2.7和2.3,仅0~30 cm土层的C/N、C/P和N/P在轻度候鸟活动下显著增加,而所有土层化学计量比在重度候鸟活动下均无显著变化。土壤化学计量比与土壤理化性质具有显著的相关性,SOC、TN和TP等是候鸟活动下影响鄱阳湖湿地土壤碳氮磷化学计量比的主要因子。综上,候鸟活动对鄱阳湖湿地土壤碳氮磷化学计量比的影响存在深度阈值(约30 cm),且这些影响多符合“适度干扰假说”,研究结果为湿地与候鸟的保护提供了新的视角。.
Keywords: Poyang Lake; ecological stoichiometry; migratory bird; soil nutrient; wetland.