Poly(ether imide) Film Doped with Protonated Tetra(aniline) Molecules for Efficiently Enhancing the Capacitive Energy Storage Performance

ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49756-49762. doi: 10.1021/acsami.4c09356. Epub 2024 Sep 5.

Abstract

The polymer dielectric spacer plays a key role in the performance of film capacitors. However, currently, commercial polymer dielectric films generally have low relative dielectric constants (<4) and low capacitive energy storage densities (<3 J cm-3). Here, we report the use of protonated tetra(aniline) (TANI) molecules with a length of 1.3 nm to improve the energy storage performance of poly(ether imide) (PEI) films. With only a small content of TANI doping, i.e., 0.7 wt %, both the dielectric constant and energy storage density of PEI film can be significantly improved, while the dielectric loss remains as low as that of pure PEI. A maximum energy density of 9.4 J cm-3 is achieved. To manifest the efficacy of protonated TANI, polyaniline and deprotonated TANI are also prepared and used as dopants in PEI. The PANI filler can also increase the dielectric constant, while the dielectric loss is increased as well. The deprotonated TANI doped in PEI has no influence on both the dielectric constant and energy density, implying that the protonated amino groups of TANI molecules are responsible for the enhanced dielectric constant of the PEI/TANI composite. The correlation between protonation of TANI dopants and dielectric properties is discussed in detail.

Keywords: dielectric polymer; energy storage; poly(ether imide); protonation; tetra(aniline).