In this study, three BODIPY-based fluorescent probes were designed and synthesized. The ultraviolet-visible spectra, fluorescence spectra, smartphone color recognition application and bioimaging were utilized to evaluate the capacity of the probes. By comparing key parameters, BDP-SIN had optimal performances including fastest response (10 min), highest signal-to-noise ratio (815 times) and lowest limit of detection (LOD = 49 nM). The recovery rate ranged from 92.04 % to 103.25 %. Meanwhile, BDP-SIN was triumphantly employed for determination of Cys in different daily food samples. Moreover, the test strips and microporous filter membrane loaded with BDP-SIN were developed for the portable real-time visualization and quantitative detection of Cys in food samples, which the contents ranged from 0.27 μM to 0.49 μM. Besides, BDP-SIN could image Cys in the living cells and mice. The novelty of this work was that developed an effective tool for researching the roles of Cys in food industry and living organisms.
Keywords: Bioimaging; Food analysis; Optical sensors; Portably detection.
Copyright © 2024 Elsevier Ltd. All rights reserved.