A unique metabolic gene cluster regulates lactose and galactose metabolism in the yeast Candida intermedia

Appl Environ Microbiol. 2024 Oct 23;90(10):e0113524. doi: 10.1128/aem.01135-24. Epub 2024 Sep 6.

Abstract

Lactose assimilation is a relatively rare trait in yeasts, and Kluyveromyces yeast species have long served as model organisms for studying lactose metabolism. Meanwhile, the metabolic strategies of most other lactose-assimilating yeasts remain unknown. In this work, we have elucidated the genetic determinants of the superior lactose-growing yeast Candida intermedia. Through genomic and transcriptomic analyses, we identified three interdependent gene clusters responsible for the metabolism of lactose and its hydrolysis product galactose: the conserved LAC cluster (LAC12, LAC4) for lactose uptake and hydrolysis, the conserved GAL cluster (GAL1, GAL7, and GAL10) for galactose catabolism through the Leloir pathway, and a "GALLAC" cluster containing the transcriptional activator gene LAC9, second copies of GAL1 and GAL10, and a XYL1 gene encoding an aldose reductase involved in carbon overflow metabolism. Bioinformatic analysis suggests that the GALLAC cluster is unique to C. intermedia and has evolved through gene duplication and divergence, and deletion mutant phenotyping proved that the cluster is indispensable for C. intermedia's growth on lactose and galactose. We also show that the regulatory network in C. intermedia, governed by Lac9 and Gal1 from the GALLAC cluster, differs significantly from the galactose and lactose regulons in Saccharomyces cerevisiae, Kluyveromyces lactis, and Candida albicans. Moreover, although lactose and galactose metabolism are closely linked in C. intermedia, our results also point to important regulatory differences.IMPORTANCEThis study paves the way to a better understanding of lactose and galactose metabolism in the non-conventional yeast C. intermedia. Notably, the unique GALLAC cluster represents a new, interesting example of metabolic network rewiring and likely helps to explain how C. intermedia has evolved into an efficient lactose-assimilating yeast. With the Leloir pathway of budding yeasts acting like a model system for understanding the function, evolution, and regulation of eukaryotic metabolism, this work provides new evolutionary insights into yeast metabolic pathways and regulatory networks. In extension, the results will facilitate future development and use of C. intermedia as a cell-factory for conversion of lactose-rich whey into value-added products.

Keywords: cheese whey; evolution; galactose regulatory system; metabolism; non-conventional yeast; transcriptional regulation.

MeSH terms

  • Candida* / genetics
  • Candida* / metabolism
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Galactose* / metabolism
  • Gene Expression Regulation, Fungal
  • Kluyveromyces / genetics
  • Kluyveromyces / growth & development
  • Kluyveromyces / metabolism
  • Lactose* / metabolism
  • Multigene Family*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism

Substances

  • Galactose
  • Lactose
  • Fungal Proteins