Mechanical ventilation stands as a life-saving intervention in the management of respiratory failure. However, it carries the risk of ventilator-induced lung injury. Despite the adoption of lung-protective ventilation strategies, including lower tidal volumes and pressure limitations, mortality rates remain high, leaving room for innovative approaches. The concept of mechanical power has emerged as a comprehensive metric encompassing key ventilator parameters associated with the genesis of ventilator-induced lung injury, including volume, pressure, flow, resistance, and respiratory rate. While numerous animal and human studies have linked mechanical power and ventilator-induced lung injury, its practical implementation at the bedside is hindered by calculation challenges, lack of equation consensus, and the absence of an optimal threshold. To overcome the constraints of measuring static respiratory parameters, dynamic mechanical power is proposed for all patients, regardless of their ventilation mode. However, establishing a causal relationship is crucial for its potential implementation, and requires further research. The objective of this review is to explore the role of mechanical power in ventilator-induced lung injury, its association with patient outcomes, and the challenges and potential benefits of implementing a ventilation strategy based on mechanical power.
Keywords: Positive-pressure respiration; Pulmonary ventilation; Respiratory distress syndrome; Respiratory insufficiency; Ventilator-induced lung injury.
Copyright © 2024. Published by Elsevier Inc.