Synergistic effect between sulfur vacancies and S-scheme heterojunctions in WO3/VS-Zn3In2S6 for enhanced photocatalytic CO2 reduction in H2O vapor

J Colloid Interface Sci. 2025 Jan 15;678(Pt B):233-245. doi: 10.1016/j.jcis.2024.09.023. Epub 2024 Sep 3.

Abstract

Converting CO2 into CO, CH4, and other hydrocarbons using solar energy presents a viable approach for addressing energy shortages. In this study, photocatalysts with S-deficient WO3/Zn3In2S6 (WO3/VS-ZIS) S-scheme heterojunctions have been successfully synthesized. Under UV-vis light irradiation, 20 %WO3/VS-ZIS demonstrated significantly improved CO2 reduction activity and CH4 selectivity. Detailed characterization and density functional theory (DFT) calculations reveal that the enhanced performance is due to the synergistic optimization of the S-scheme heterojunction and sulfur vacancies (VS) for CO2 reduction. The presence of VS aids in the adsorption and activation of CO2 and enhances the separation of charge carriers. The 2D/2D S-scheme heterostructure assembled with WO3 nanosheets not only accelerates the migration and separation of photoexcited charge carriers but also improves the adsorption of H2O and the formation of VS, thereby increasing the adsorption and activation of CO2 and facilitating the protonation of CO* to produce CH4. This study clarifies the synergistic effect of VS and S-scheme heterostructures in improving photocatalytic performance, offering valuable insights into the photoactivation process of CO2 at VS in S-scheme heterojunctions.

Keywords: CO(2) photoreduction; S-scheme heterojunction; Sulfur vacancies; Synergistic effect; WO(3)/V(S)-Zn(3)In(2)S(6).