Background: Leber congenital amaurosis 1 (LCA1), caused by mutations in GUCY2D, is a rare inherited retinal disease that typically causes blindness in early childhood. The aim of this study was to evaluate the safety and preliminary efficacy of ascending doses of ATSN-101, a subretinal AAV5 gene therapy for LCA1.
Methods: 15 patients with genetically confirmed biallelic mutations in GUCY2D were included in this phase 1/2 study. All patients received unilateral subretinal injections of ATSN-101. In the dose-escalation phase, three adult cohorts (n=3 each) were treated with three ascending doses: 1·0 × 1010 vg/eye (low dose), 3·0 × 1010 vg/eye (middle dose), and 1·0 × 1011 vg/eye (high dose). In the dose-expansion phase, one adult cohort (n=3) and one paediatric cohort (n=3) were treated at the high dose. The primary endpoint was the incidence of treatment-emergent adverse events (TEAEs), and secondary endpoints included full-field stimulus test (FST) and best-corrected visual acuity (BCVA). A multi-luminance mobility test (MLMT) was also done. Data through the 12-month main study period are reported.
Findings: Patients were enrolled between Sept 12, 2019, and May 5, 2022. A total of 68 TEAEs were observed, 56 of which were related to the surgical procedure. No serious TEAE was related to the study drug. Ocular inflammation was mild and reversible with steroid treatment. For patients who received the high dose, mean change in dark-adapted FST was 20·3 decibels (dB; 95% CI 6·6 to 34·0) for treated eyes and 1·1 dB (-3·7 to 5·9) for untreated eyes at month 12 (white stimulus); improvements were first observed at day 28 and persisted over 12 months (p=0·012). Modest improvements in BCVA were also observed (p=0·10). Three of six patients who received the high dose and did the MLMT achieved the maximum score in the treated eye.
Interpretation: ATSN-101 is well tolerated 12 months after treatment, with no drug-related serious adverse events. Clinically significant improvements in retinal sensitivity were sustained in patients receiving the high dose.
Funding: Atsena Therapeutics.
Copyright © 2024 Elsevier Ltd. All rights reserved, including those for text and data mining, AI training, and similar technologies.