Protein phosphatase PP1 has two active-site metals (Zn2+/Fe2+) that are essential for catalysis. However, when expressed in bacteria, PP1 has two Mn2+-ions in its active site, indicating that the incorporation of Zn2+/Fe2+ depends on additional eukaryotic component(s). Here, we used purified, metal-deficient PP1 to study metal incorporation. Fe2+ was incorporated spontaneously, but Zn2+ was not. Mn2+-incorporation at physiological pH depended on the co-expression of PP1 with PPP1R2 (Inhibitor-2) or PPP1R11 (Inhibitor-3), or a pre-incubation of PP1 at pH 4. We also demonstrate that PPP1R2 and PPP1R11 are Zn2+-binding proteins but are, by themselves, not able to load PP1 with Zn2+. Our data suggest that PPP1R2 and PPP1R11 function as metal chaperones for PP1 but depend on co-chaperone(s) and/or specific modification(s) for the transfer of associated Zn2+ to PP1.
Keywords: PP1; PPP1R11; PPP1R2; RIPPO; metal incorporation; metallo‐enzyme; protein phosphatase.
© 2024 The Author(s). FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.