Scalable Layer-Controlled Oxidation of Bi2O2Se for Self-Rectifying Memristor Arrays With sub-pA Sneak Currents

Adv Mater. 2024 Nov;36(44):e2406608. doi: 10.1002/adma.202406608. Epub 2024 Sep 9.

Abstract

Smart memristors with innovative properties are crucial for the advancement of next-generation information storage and bioinspired neuromorphic computing. However, the presence of significant sneak currents in large-scale memristor arrays results in operational errors and heat accumulation, hindering their practical utility. This study successfully synthesizes a quasi-free-standing Bi2O2Se single-crystalline film and achieves layer-controlled oxidation by developing large-scale UV-assisted intercalative oxidation, resulting β-Bi2SeO5/Bi2O2Se heterostructures. The resulting β-Bi2SeO5/Bi2O2Se memristor demonstrates remarkable self-rectifying resistive switching performance (over 105 for ON/OFF and rectification ratios, as well as nonlinearity) in both nanoscale (through conductive atomic force microscopy) and microscale (through memristor array) regimes. Furthermore, the potential for scalable production of self-rectifying β-Bi2SeO5/Bi2O2Se memristor, achieving sub-pA sneak currents to minimize cross-talk effects in high-density memristor arrays is demonstrated. The memristors also exhibit ultrafast resistive switching (sub-100 ns) and low power consumption (1.2 pJ) as characterized by pulse-mode testing. The findings suggest a synergetic effect of interfacial Schottky barriers and oxygen vacancy migration as the self-rectifying switching mechanism, elucidated through controllable β-Bi2SeO5 thickness modulation and theoretical ab initio calculations.

Keywords: layer‐controlled intercalative oxidation; quasi‐free‐standing single‐crystalline Bi2O2Se; self‐rectifying memristor array; sneak current; β‐Bi2SeO5.