The synthesis of aryl amines from 3-alkynyl-2-pyrones and various amines is described. Mechanistically, the aryl amines are proposed to arise from the 3-alkynyl-2-pyrone substrates through their selective opening in a 1,6-fashion by secondary amines followed by decarboxylation and an unexpected rearrangement. The proposed mechanism is supported by quantum chemical transition-state calculations, which are consistent with the regiochemical outcome. The scope of this transformation spans a variety of 3-alkynyl-2-pyrones and a range of secondary amines. The influence of the secondary amine coupling partners on reaction efficiency was elucidated through data-driven modeling as well as scope exploration. These latter studies revealed that the steric bulk of the secondary amine coupling partner under the reaction conditions serves as a strong indicator of overall reaction efficiency.
This journal is © The Royal Society of Chemistry.