Macrocyclic Parallel Dimer Showing Quantum Coherence of Quintet Multiexcitons at Room Temperature

J Am Chem Soc. 2024 Sep 18;146(37):25527-25535. doi: 10.1021/jacs.4c05677. Epub 2024 Sep 9.

Abstract

Singlet fission (SF) is a promising approach in quantum information science because it can generate spin-entangled quintet triplet pairs by photoexcitation independent of temperature. However, it is still challenging to rationally achieve quantum coherence at room temperature, which requires precise control of the orientation and dynamics of triplet pairs. Here we show that the quantum coherence of quintet multiexcitons can be achieved at room temperature by arranging two pentacene chromophores in parallel and in close proximity within a macrocycle. By making dynamic covalent Schiff-base bonds between aldehyde-modified pentacene derivatives, macrocyclic parallel dimer-1 (MPD-1) can be selectively synthesized in a high yield. MPD-1 exhibits fast subpicosecond SF in polystyrene film and generates spin-polarized quintet multiexcitons. Furthermore, the coherence time T2 of the MPD-1 quintet is as long as 648 ns, even at room temperature. This macrocyclic parallel dimer strategy opens up new possibilities for future quantum applications using molecular multilevel qubits.