DNA polymerase theta ( ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for linker functions in DNA repair.