Whereas hydroxyl radical is commonly named as the Fenton product responsible for DNA and RNA damage in cells, here we demonstrate that the cellular reaction generates carbonate radical anion due to physiological levels of bicarbonate. Analysis of the metabolome, transcriptome and, in human cells, the nuclear genome shows a consistent buffering of H2O2-induced oxidative stress leading to one common pathway, namely guanine oxidation. Particularly revealing are nanopore-based studies of direct RNA sequencing of cytosolic and mitochondrial ribosomal RNA along with glycosylase-dependent qPCR studies of oxidative DNA damage in telomeres. The focusing of oxidative modification on one pathway is consistent with the highly evolved base excision repair suite of enzymes and their involvement in gene regulation in response to oxidative stress.