The hippocampus is one of the most vulnerable regions affected in disorders characterized by overt neuroinflammation such as neurodegenerative diseases. Pleiotrophin (PTN) is a neurotrophic factor that modulates acute neuroinflammation in different contexts. PTN is found highly upregulated in the brain in different chronic disorders characterized by neuroinflammation, suggesting an important role in the modulation of sustained neuroinflammation. To test this hypothesis, we studied the acute and long-term effects of a single lipopolysaccharide (LPS; 5 mg/kg) administration in Ptn+/+ and Ptn-/- mice, and in mice with Ptn-overexpression (Ptn-Tg). Endogenous PTN levels proportionally modulate LPS-induced increase in TNF-α plasma levels one hour after treatment. In the dentate gyrus (DG) of the hippocampus, a lower percentage of DCX+ cells were detected in saline-treated Ptn-/- mice compared to Ptn+/+ mice, suggesting a crucial role of PTN in the maintenance of hippocampal neuronal progenitors. The data show that PTN overexpression tends to potentiate acute microglial responses in the DG 16 hours after LPS treatment. Remarkably, a significant increase in the number of neuronal progenitors together with astrogliosis was detected 10 months after a single injection of LPS treatment in wild type mice. However, these LPS-induced long-term effects were prevented in Ptn-/- and Ptn-Tg mice, suggesting that PTN modulates LPS-induced long-term neurogenesis changes and astrocytic response in the hippocampus. The data presented here suggest that endogenous PTN levels are crucial in the regulation of acute LPS-induced systemic and hippocampal microglial responses in young mice. Furthermore, our findings provide evidence of the key role of PTN in the regulation of long-term LPS effects on astrocytic response and neurogenesis in the hippocampus.
Keywords: Adult neurogenesis; Hippocampus; Lipopolysaccharide; Neuroinflammation; Pleiotrophin.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.