Boreal tree species diversity increases with global warming but is reversed by extremes

Nat Plants. 2024 Oct;10(10):1473-1483. doi: 10.1038/s41477-024-01794-w. Epub 2024 Sep 11.

Abstract

Tree species diversity is essential to sustaining stable forest ecosystem functioning. However, it remains unclear how boreal tree species diversity has changed in response to climate change and how it is associated with productivity and the temporal stability of boreal forest ecosystems. By combining 5,312 field observations and 55,560 Landsat images, here we develop a framework to estimate boreal tree species diversity (represented by the Shannon diversity index, H') for the years 2000, 2010 and 2020. We document an average increase in H' by 12% from 2000 to 2020 across the boreal forests. This increase accounts for 53% of all boreal forest areas and mainly occurs in the eastern forest-boreal transition region, the Okhotsk-Manchurian taiga and the Scandinavian-Russian taiga. Tree species diversity responds positively to increasing temperatures, but the relationship is weakened for higher temperature changes, and in areas of extreme warming (>0.065 °C yr-1), a negative impact on tree species diversity is found. We further show that the observed spatiotemporal increase in diversity is significantly associated with increased productivity and temporal stability of boreal forest biomass. Our results highlight climate-warming-driven increases in boreal tree species diversity that positively affect boreal ecosystem functioning but are countered in areas of extreme warming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • Climate Change
  • Forests
  • Global Warming*
  • Taiga*
  • Trees* / physiology