Turning to immunosuppressive tumors: Deciphering the immunosenescence-related microenvironment and prognostic characteristics in pancreatic cancer, in which GLUT1 contributes to gemcitabine resistance

Heliyon. 2024 Aug 22;10(17):e36684. doi: 10.1016/j.heliyon.2024.e36684. eCollection 2024 Sep 15.

Abstract

Increasing evidence indicates that the remodeling of immune microenvironment heterogeneity influences pancreatic cancer development, as well as sensitivity to chemotherapy and immunotherapy. However, a gap remains in the exploration of the immunosenescence microenvironment in pancreatic cancer. In this study, we identified two immunosenescence-associated isoforms (IMSP1 and IMSP2), with consequential differences in prognosis and immune cell infiltration. We constructed the MLIRS score, a hazard score system with robust prognostic performance (area under the curve, AUC = 0.91), based on multiple machine learning algorithms (101 cross-validation methods). Patients in the high MLIRS score group had worse prognosis (P < 0.0001) and lower abundance of immune cell infiltration. Conversely, the low MLIRS score group showed better sensitivity to chemotherapy and immunotherapy. Additionally, our MLIRS system outperformed 68 other published signatures. We identified the immunosenescence microenvironmental windsock GLUT1 with certain co-expression properties with immunosenescence markers. We further demonstrated its positive modulation ability of proliferation, migration, and gemcitabine resistance in pancreatic cancer cells. To conclude, our study focused on training of composite machine learning algorithms in multiple datasets to develop a robust machine learning modeling system based on immunosenescence and to identify an immunosenescence-related microenvironment windsock, providing direction and guidance for clinical prediction and application.