Impacts of co-cold extrusion (≤50 °C) of whey protein isolate (WPI) and cysteine (Cys, 0, 20, 40, 60, 80 and 100 mmol/L) on its physicochemical, in vitro digestion and rheological properties were investigated. As Cys concentration increased, the emulsifying properties and in vitro digestibility of co-extruded WPI-Cys products showed an increasing trend. Specifically, when Cys reached 100 mmol/L, surface hydrophobicity, emulsification activity index (EAI), emulsification stability index (ESI) and in vitro stomach digestibility of the co-extruded WPI-Cys products increased by 205.07%, 77.51%, 193.95% and 71.81% compared with WPI, respectively. Principal component analysis (PCA) results further indicated that co-extruded WPI-Cys at a concentration of 100 mmol/L had the best functional properties. In addition, co-extruded WPI-Cys exhibited the strongest Péclet number (Pe) value and apparent viscosity at a Cys concentration of 100 mmol/L among all samples. Therefore, co-extrusion would be an effective method for modifying WPI, providing whey protein-based ingredients with excellent functional properties for food processing.
Keywords: Co-extrusion; Cysteine; Whey protein isolate.
© 2024 The Authors.