Relaxometric properties and biocompatibility of a novel nanostructured fluorinated gadolinium metal-organic framework

Dalton Trans. 2024 Oct 1;53(38):15937-15945. doi: 10.1039/d4dt02134g.

Abstract

A novel Gd-MOF based on tetrafluoro-terephthalic acid has been synthesized and its structure has been solved using X-ray single crystal diffraction data. The compound, with the formula [Gd2(F4BDC)3·H2O]·DMF, is isostructural with other Ln-MOFs based on the same ligand and has been recently reported. Its crystals were also reduced to nanometer size by employing acetic acid or cetyltrimethylammonium bromide (CTAB) as a modulator. The relaxometric properties of the nanoparticles were evaluated in solution by measuring 1H T1 and T2 as a function of the applied magnetic field and temperature. The biocompatibility of Gd-MOFs was evaluated on murine microglial BV-2 and human glioblastoma U251 cell lines. In both cell lines, Gd-MOFs do not modify the cell cycle profile or the activation levels of ERK1/2 and Akt, which are protein-serine/threonine kinases that participate in many signal transduction pathways. These pathways are fundamental in the regulation of a large variety of processes such as cell migration, cell cycle progression, differentiation, cell survival, metabolism, transcription, tumour progression and others. These data indicate that Gd-MOF nanoparticles exhibit high biocompatibility, making them potentially valuable for diagnostic and biomedical applications.

MeSH terms

  • Animals
  • Biocompatible Materials / chemical synthesis
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology
  • Cell Line
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Gadolinium* / chemistry
  • Gadolinium* / pharmacology
  • Halogenation
  • Humans
  • Metal-Organic Frameworks* / chemical synthesis
  • Metal-Organic Frameworks* / chemistry
  • Metal-Organic Frameworks* / pharmacology
  • Mice
  • Nanostructures / chemistry

Substances

  • Gadolinium
  • Metal-Organic Frameworks
  • Biocompatible Materials