Paraneoplastic leukocytosis induces NETosis and thrombosis in bladder cancer PDX model

Am J Cancer Res. 2024 Aug 25;14(8):3694-3710. doi: 10.62347/IHIO5742. eCollection 2024.

Abstract

Paraneoplastic leukocytosis (PNL) in genitourinary cancer, though rare, can indicate aggressive behavior and poor outcomes. It has been potentially linked to cancer expressing G-CSF and GM-CSF, along with their respective receptors, exerting an autocrine/paracrine effect. In our study, we successfully established four patient-derived xenograft (PDX) lines and related cell lines from urothelial cancer (UC), conducting next-generation sequencing (NGS) for genetic studies. UC-PDX-LN1, originating from bladder cancer, exhibited two druggable targets - HRAS and ERCC2 - responding well to chemotherapy and targeted therapy, though not to tipifarnib, an HRAS inhibitor. Transcriptome analysis post-treatment illuminated potential mechanisms, with index protein analysis confirming their anticancer pathways. Mice implanted with UC-PDX-LN1 mirrored PNL observed in the patient's original tumor. Cytokine array and RT-PCR analyses revealed high levels of G-CSF and GM-CSF in our PDX and cell lines, along with their presence in culture media and tumor cysts.Leukocytosis within small vessels in and around the tumor, associated with NETosis and thrombus formation, suggested a mechanism wherein secreted growth factors were retained, further fueling tumor growth via autocrine/paracrine signaling. Disrupting this cancer cell-NETosis-thrombosis cycle, we demonstrated that anti-neutrophil or anticoagulant interventions enhanced chemotherapy's antitumor effects or prolonged survival in mice, even though these drugs lacked direct antitumor efficacy when used independently. Clinical observations in bladder cancer patients revealed PNL in 1.61% of cases (35/2162) with associated poor prognosis. These findings propose a novel approach, advocating for the combination of anticancer/NETosis/thrombosis strategies for managing UC patients presenting with PNL in clinical settings.

Keywords: NETosis; Paraneoplastic leukocytosis; autocrine; bladder cancer; patient-derived xenograft; thrombosis.