Comparison of two statistical methodologies for a binary classification problem of two-dimensional images

J Appl Stat. 2023 Nov 15;51(12):2279-2297. doi: 10.1080/02664763.2023.2279012. eCollection 2024.

Abstract

The present work intends to compare two statistical classification methods using images as covariates and under the comparison criterion of the ROC curve. The first implemented procedure is based on exploring a mathematical-statistical model using multidimensional arrangements, frequently known as tensors. It is based on the theoretical framework of the high-dimensional generalized linear model. The second methodology is situated in the field of functional data analysis, particularly in the space of functions that have a finite measure of the total variation. A simulation study is carried out to compare both classification methodologies using the area under the ROC curve (AUC). The model based on functional data had better performance than the tensor model. A real data application using medical images is presented.

Keywords: 62R10; Multidimensional array; classification; functional regression; generalized scalar-on-image regression; tensor regression; total variation.