Positional Isomerism of Aromatic Heterocyclic Spacer Cations in Two-Dimensional Dion-Jacobson Hybrid Perovskites

J Phys Chem Lett. 2024 Sep 26;15(38):9575-9584. doi: 10.1021/acs.jpclett.4c02436. Epub 2024 Sep 13.

Abstract

Ligand engineering of aromatic heterocyclic cations in two-dimensional (2D) Dion-Jacobson (DJ) perovskites has been widely explored in recent years. In this study, how the positional isomers of aromatic heterocyclic cations tune the lattice of 2D perovskites, thereby influencing the transport and recombination dynamics of charge carriers, has been investigated through nonadiabatic molecular dynamics simulations. We demonstrate that the meta-substituted 3-(aminomethyl)pyridinium (3AMPY) cations greatly reduce the strength of electron-vibration coupling since the strong hydrogen-bonding network introduced by the changes in the arrangement of spacer cations significantly suppresses the structural thermal fluctuations. Compared to the para-substituted 4-(aminomethyl)pyridinium (4AMPY) cation, using the asymmetric 3AMPY as a spacer cation can achieve improved in-plane transport performance, enhanced thermal stability, and suppressed charge carrier recombination through weakening electron-vibration interactions. Our results explain the observed lifetime difference between the two types of DJ-phase perovskites in experiments and provide new guidance for optimizing the performance of perovskite devices.