Computational prediction of multiple antigen epitopes

Bioinformatics. 2024 Oct 1;40(10):btae556. doi: 10.1093/bioinformatics/btae556.

Abstract

Motivation: Identifying antigen epitopes is essential in medical applications, such as immunodiagnostic reagent discovery, vaccine design, and drug development. Computational approaches can complement low-throughput, time-consuming, and costly experimental determination of epitopes. Currently available prediction methods, however, have moderate success predicting epitopes, which limits their applicability. Epitope prediction is further complicated by the fact that multiple epitopes may be located on the same antigen and complete experimental data is often unavailable.

Results: Here, we introduce the antigen epitope prediction program ISPIPab that combines information from two feature-based methods and a docking-based method. We demonstrate that ISPIPab outperforms each of its individual classifiers as well as other state-of-the-art methods, including those designed specifically for epitope prediction. By combining the prediction algorithm with hierarchical clustering, we show that we can effectively capture epitopes that align with available experimental data while also revealing additional novel targets for future experimental investigations.

MeSH terms

  • Algorithms*
  • Antigens* / chemistry
  • Antigens* / immunology
  • Computational Biology* / methods
  • Epitope Mapping / methods
  • Epitopes* / chemistry
  • Epitopes* / immunology
  • Software

Substances

  • Epitopes
  • Antigens