YOLOv8-Based System for Nail Capillary Detection on a Single-Board Computer

Diagnostics (Basel). 2024 Aug 23;14(17):1843. doi: 10.3390/diagnostics14171843.

Abstract

Nail capillaroscopic examination is an inexpensive and easily applicable method to identify capillary morphological changes in patients with conditions such as systemic sclerosis and Raynaud's. The detection of changes in capillaries makes an important contribution to diagnosing these diseases. Capillary morphology is important in the symptoms of these diseases, and capillary diameter, visibility, distribution, length, microbleeds, blood flow, and density are important indicators in capillaroscopic evaluation. Manual examination to determine these parameters is subjective, causes inconsistent results, and is labor-intensive and time-consuming. To overcome these problems, a YOLOv8s-based system was proposed in this paper to detect the number, thickness, and density of capillaries in the nail bed. The system's components include database systems that store the analysis results, artificial intelligence-based software that runs on the SBC (Single-Board Computer), and recorded microscope images. mAP and F1_score parameters were used to evaluate the system's performance, and values of 0.882 and 0.83 were obtained. The proposed system is promising in improving the diagnosis process of diseases such as systemic sclerosis and Raynaud's by providing objective measurements and the early diagnosis and monitoring of diseases.

Keywords: YOLOv8; artificial intelligence; nail capillary; proximal nail fold.

Grants and funding

This research received no external funding.