Curcumin-Dichloroacetate Hybrid Molecule as an Antitumor Oral Drug against Multidrug-Resistant Advanced Bladder Cancers

Cancers (Basel). 2024 Sep 8;16(17):3108. doi: 10.3390/cancers16173108.

Abstract

Tumor cells produce excessive reactive oxygen species (ROS) but cannot detoxify ROS if they are due to an external agent. An agent that produces toxic levels of ROS, specifically in tumor cells, could be an effective anticancer drug. CMC-2 is a molecular hybrid of the bioactive polyphenol curcumin conjugated to dichloroacetate (DCA) via a glycine bridge. The CMC-2 was tested for its cytotoxic antitumor activities and killed both naïve and multidrug-resistant (MDR) bladder cancer (BCa) cells with equal potency (<1.0 µM); CMC-2 was about 10-15 folds more potent than curcumin or DCA. Growth of human BCa xenograft in mice was reduced by >50% by oral gavage of 50 mg/kg of CMC-2 without recognizable systemic toxicity. Doses that used curcumin or DCA showed minimum antitumor effects. In vitro, the toxicity of CMC-2 in both naïve and MDR cells depended on increased intracellular ROS in tumor cells but not in normal cells at comparable doses. Increased ROS caused the permeabilization of mitochondria and induced apoptosis. Further, adding N-Acetyl cysteine (NAC), a hydroxyl radical scavenger, abolished excessive ROS production and CMC-2's cytotoxicity. The lack of systemic toxicity, equal potency against chemotherapy -naïve and resistant tumors, and oral bioavailability establish the potential of CMC-2 as a potent drug against bladder cancers.

Keywords: apoptosis; chemically modified curcumin-2 (CMC-2); chemotherapy-drug-resistant BCa; neoadjuvant chemotherapy; oxidative stress; urinary bladder cancer (BCa).