The high mortality in the global population due to chronic diseases highlights the urgency to identify effective alternative therapies. Regenerative medicine provides promising new approaches for this purpose, particularly in the use of induced pluripotent stem cells (iPSCs). The aim of the work is to establish a new pluripotency cell line obtained for the first time by reprogramming human gingival mesenchymal stem cells (hGMSCs) by a non-integrating method. The hGMSC-derived iPS line characterization is performed through morphological analysis with optical and electron scanning microscopy and through the pluripotency markers expression evaluation in cytofluorimetry, immunofluorescence, and RT-PCR. To confirm the pluripotency of new hGMSC-derived iPS, the formation of embryoid bodies (EBs), as an alternative to the teratoma formation test, is studied in morphological analysis and through three germ layers' markers' expression in immunofluorescence and RT-PCR. At the end, a comparative study between parental hGMSCs and derived iPS cells is performed also for the extracellular vesicles (EVs) and their miRNA content. The new hGMSC-derived iPS line demonstrated to be pluripotent in all aspects, thus representing an innovative dynamic platform for personalized tissue regeneration.
Keywords: EBs; EVs; hGMSCs; iPS cells; regenerative medicine.