Evaluation of Rheological Properties of Asphalt Binder Modified with Biochar from Oat Hulls

Materials (Basel). 2024 Aug 30;17(17):4312. doi: 10.3390/ma17174312.

Abstract

In this study, the effect of biochar from oat hulls (BO) on the rheological properties of a PG 64-22 asphalt binder was evaluated using a full factorial design, which included the following factors: pyrolysis temperature (PT) (300 °C and 500 °C), BO particle size (<20 µm and <75 µm), and the amount of BO (2.5%, 5%, and 7.5%). First, the morphological and physicochemical properties of BO were analyzed by comparing it with graphite powder (CFG) and commercial activated carbon (CAC). The physicochemical properties of the modified asphalt binder were then evaluated using confocal laser microscopy, scanning electron microscopy (SEM-EDX), and Fourier-transform infrared spectroscopy (FTIR). Its storage stability was also evaluated. Subsequently, the rutting parameter G*/sin(δ) and the Fraass breaking point were analyzed to select asphalt binders that extended their viscoelastic range. The asphalt binders selected were those with 2.5%, 5%, and 7.5% BO, produced at a PT of 300 °C with a particle size <20 µm (BO300S). Next, the rheological properties of the selected samples were evaluated by testing for rotational viscosity, rutting parameter G*/sin(δ), multiple stress creep recovery (MSCR), fatigue parameter G*·sin(δ), and creep stiffness by bending beam rheometry (BBR). The rheological aging index according to rutting parameter G*/sin(δ) (RAI) was also evaluated. These tests were conducted in different states of the asphalt binder: original, short-term aged, and long-term aged. According to the results, the application of BO300S significantly increased the resistance of the asphalt binder to rutting and rotational viscosity, proportional to the amount added to the asphalt binder. Moreover, low modifier percentages improved fatigue resistance, outperforming CFG and CAC. In addition, it performs well at low service temperatures, registering better resistance than the control asphalt binders.

Keywords: asphalt binder; biochar; rheological properties.