Digital histogram generation for time-resolved measurements with single-photon avalanche diode (SPAD) sensors requires the storage of many timestamp signals. This work presents a mixed-signal time-to-digital converter (TDC) that uses analog storage to achieve an area-efficient design that can be integrated in large SPAD arrays. Fabricated using a 150 nm CMOS process, the prototype occupies an area of only 18.3 µm × 36.5 µm, a notable size reduction compared to conventional designs. The experimental results demonstrated high performance, with an integral nonlinearity (INL) of 0.35/0.14 least significant bit (LSB) and a differential nonlinearity (DNL) of 0.14/-0.12 LSB. In addition, the proposed TDC can support the construction of histograms comprising up to 512 bins, making it an effective solution to accommodate a wide range of resolution requirements. Validated in a point-of-care (PoC) device for fluorescence lifetime measurements, it distinguished between lifetimes of approximately 4.1 ns, 3.6 ns and 80 ns with the Alexa Fluor (AF) 546 and 568 dyes and Quantum Dot (QD) 705, respectively. The analog storage design and area-efficient architecture offer a novel approach to integrating TDCs in SPAD-based systems, with potential applications in medical diagnostics and beyond.
Keywords: CMOS; histogram; mixed-signal; quantum dot (QD); single-photon avalanche diode (SPAD); time-resolved fluorescence; time-to-digital converter (TDC).