Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation

IUBMB Life. 2024 Dec;76(12):1309-1324. doi: 10.1002/iub.2913. Epub 2024 Sep 14.

Abstract

Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.

Keywords: EMT; ER signaling pathway; TTP‐5; breast cancer; β‐catenin.

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / metabolism
  • Breast Neoplasms* / pathology
  • Cell Movement* / drug effects
  • Cell Proliferation* / drug effects
  • Estrogen Receptor alpha* / genetics
  • Estrogen Receptor alpha* / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • MCF-7 Cells
  • Molecular Docking Simulation*
  • Piperazines / chemistry
  • Piperazines / pharmacology
  • Pyrimidines* / chemistry
  • Pyrimidines* / pharmacology
  • Signal Transduction* / drug effects
  • Triazoles* / chemistry
  • Triazoles* / pharmacology
  • beta Catenin* / metabolism

Substances

  • Triazoles
  • beta Catenin
  • Pyrimidines
  • Estrogen Receptor alpha
  • ESR1 protein, human
  • CTNNB1 protein, human
  • Piperazines
  • pyrimidine
  • Antineoplastic Agents