Recent advancements in high-throughput sequencing technologies have significantly enhanced our ability to unravel the intricacies of gene regulatory processes. A critical challenge in this endeavor is the identification of variant effects, a key factor in comprehending the mechanisms underlying gene regulation. Non-coding variants, constituting over 90% of all variants, have garnered increasing attention in recent years. The exploration of gene variant impacts and regulatory mechanisms has spurred the development of various deep learning approaches, providing new insights into the global regulatory landscape through the analysis of extensive genetic data. Here, we provide a comprehensive overview of the development of the non-coding variants models based on bulk and single-cell sequencing data and their model-based interpretation and downstream tasks. This review delineates the popular sequencing technologies for epigenetic profiling and deep learning approaches for discerning the effects of non-coding variants. Additionally, we summarize the limitations of current approaches in variant effect prediction research and outline opportunities for improvement. We anticipate that our study will offer a practical and useful guide for the bioinformatic community to further advance the unraveling of genetic variant effects.
Keywords: deep learning; machine learning; non-coding variants; variant effect prediction.
© The Author(s) 2024. Published by Oxford University Press.