Oral squamous cell carcinoma recognition presents a challenge due to late diagnosis and costly data acquisition. A cost-efficient, computerized screening system is crucial for early disease detection, minimizing the need for expert intervention and expensive analysis. Besides, transparency is essential to align these systems with critical sector applications. Explainable Artificial Intelligence (XAI) provides techniques for understanding models. However, current XAI is mostly data-driven and focused on addressing developers' requirements of improving models rather than clinical users' demands for expressing relevant insights. Among different XAI strategies, we propose a solution composed of Case-Based Reasoning paradigm to provide visual output explanations and Informed Deep Learning (IDL) to integrate medical knowledge within the system. A key aspect of our solution lies in its capability to handle data imperfections, including labeling inaccuracies and artifacts, thanks to an ensemble architecture on top of the deep learning (DL) workflow. We conducted several experimental benchmarks on a dataset collected in collaboration with medical centers. Our findings reveal that employing the IDL approach yields an accuracy of 85%, surpassing the 77% accuracy achieved by DL alone. Furthermore, we measured the human-centered explainability of the two approaches and IDL generates explanations more congruent with the clinical user demands.
Keywords: Case-based reasoning; Explainable artificial intelligence; Informed deep learning; Medical imaging; Oncology; Oral cancer.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.