Enhanced phosphorus removal from anoxic water using oxygen-carrying iron-rich biochar: Combined roles of adsorption and keystone taxa

Water Res. 2024 Nov 15:266:122433. doi: 10.1016/j.watres.2024.122433. Epub 2024 Sep 11.

Abstract

Anthropogenic enrichment of phosphorus (P) in water environment can cause eutrophication, harmful algal blooms, and water quality deterioration. Adsorbents are often used for the removal and recovery of P from water, however, P is highly susceptible to re-release in anoxic benthic environments. As a response, this study prepared oxygen-carrying iron-rich biochar (O-Fe-BC) as an effective oxygen micro-nanobubble carrier (Q = 8.7024 cm³/g STP at 1.5 MPa) and P adsorbent (qm = 16.7097 mg P/g, q0.1 = 3.1974 mg P/g). Over the 90-day experimental period with O-Fe-BC, dissolved oxygen (DO) levels in the overlying water could maintain at ∼4 mg/L (peaking at ∼9.5 mg/L), and total phosphorus (TP) and soluble reactive phosphorus (SRP) levels decreased by over 96 %. The higher inorganic phosphorus content in the surface sediment-biochar mixture, along with the lower labile P and Fe concentration in the sediment pore water in the O-Fe-BC group compared to other groups, suggested the enhanced P immobilization. Further mechanism exploration revealed the combined roles of adsorption and microbial response, in which O-Fe-BC achieved efficient phosphate adsorption primarily through inner-sphere complexation via ligand exchange and keystone taxa (particularly Candidatus Electronema) played a crucial role in driving water chemistry divergence. Specially, these cable bacteria could provide large pools of Fe oxides in the surface sediment, binding with P to prevent its release, as supported by significant correlations between Ca. Electronema abundance and oxidation-reduction potential (ORP), TP, SRP, and sediment Fe-P variations. Additionally, a pot experiment with mung bean seedlings showed that the recovered O-Fe-BC significantly promoted the seed germination and growth, indicating its potential as a novel material for removing and recovering P from eutrophic waters. Taken together, our work provided a promising strategy for sustainable anoxia and P pollution mitigation, and also highlighted the indispensable roles of inner-sphere adsorption in P recovery and microbial keystone taxa in P cycling regulation.

Keywords: Adsorption; Biochar; Keystone taxa; Oxygen micro-nanobubble; Phosphorus pollution control; Water environment restoration.

MeSH terms

  • Adsorption
  • Charcoal* / chemistry
  • Iron* / chemistry
  • Oxygen*
  • Phosphorus*
  • Water Pollutants, Chemical
  • Water Purification / methods

Substances

  • Phosphorus
  • Charcoal
  • Oxygen
  • biochar
  • Iron
  • Water Pollutants, Chemical