Production of Single Cell Protein (SCP) from the Peel Waste of Pea, Potato, and Banana by Aspergillus Flavus NRRL 21882 as an Efficient Organic Poultry Supplement

ACS Omega. 2024 Aug 23;9(36):37763-37770. doi: 10.1021/acsomega.4c03317. eCollection 2024 Sep 10.

Abstract

Food protein deficit has become a major issue worldwide, particularly in underdeveloped countries. Scientists are searching for a variety of less expensive solutions to this issue. One of these less expensive methods is to create single cell protein as a substrate from leftover fruit and vegetable waste, which is typically thrown away. In this regard, the fungal strain Aspergillus flavus (NRRL 21882) was used for the synthesis of SCP (single cell protein) from the waste of banana, potato, and pea. In this manner, 30 samples were collected from the whole substrate with a share of 10 samples each from banana, potato, and pea peels, which were in turn dried and powdered finely. The fermentation process was done by the process of solid state fermentation. Aspergillus flavus (NRRL 21882) generated the highest percentage, i.e. 60.67%, of crude protein from the pea peels. The composition of amino acids in crude proteins was also investigated. The findings demonstrated that the highest percentage of aspartic acid (13.34 ± 0.80%) and glutamic acid (14.92 ± 0.69%) was found in A. flavus single cell protein produced from pea peels. Soybean was supplemented with single cell protein in the boilers' diet. Compared to all treated groups, there was a substantial (p ≤ 0.05) increase in the level of antibody titer against the Newcastle disease vaccine. The supplementation of single cell protein with soybean meal had no effect on the levels of liver enzymes. The liver enzymes found in all four groups (A, B, C, and D) were within normal limits. None of the examined groups experienced any change in the feed conversion ratio, with all groups exhibiting an average FCR of 1.6. The current study concludes that broiler health and immunity is increased by supplementing poultry feed with single cell protein.