Reusing the Wasted Energy of Electrochromic Smart Window for Near-Zero Energy Building

Adv Sci (Weinh). 2024 Nov;11(42):e2406232. doi: 10.1002/advs.202406232. Epub 2024 Sep 16.

Abstract

Electrochromic smart windows (ESWs) are an effective energy-saving technology for near-zero energy buildings. They consume electric energy unidirectionally during a round-trip coloring-bleaching process, with the energy involved in the bleaching process being wasted. It is highly desirable to reuse this wasted electric energy directly and/or transfer it into other energy storage equipment, further enhancing the overall efficiency of electric energy usage. Herein, a zinc anode-based ESW (ESW-PZ) is reported that not only has fascinating visible-near-infrared (VIS-NIR) dual-band electrochromic performance (a high optical contrast of 63%) but also showcases good energy storage characteristics (a wide voltage window of 2.6 V and a high energy density of 127.5 µWh cm-2). The buildings utilizing ESW-PZ to modulate indoor environments demonstrated an average annual energy saving of 366 MJ m-2 based on energy simulations, which is about 16% of the total energy consumption. Impressively, a high utilization efficiency of 90% (855 mWh m-2) of the wasted electric energy is realized through an ingenious circuit-switching strategy, which can be reused to power small household appliances.

Keywords: electroactive polymer; electrochromic; energy storage; smart window.