Background: Acute respiratory distress syndrome (ARDS) is a serious pathological process with high mortality. Ferroptosis is pivotal in sepsis, whose regulatory mechanisms in sepsis-induced ARDS remains unknown. We aimed to determine key ferroptosis-related genes in septic ARDS and investigate therapeutic traditional Chinese medicine. Method: Sepsis-induced ARDS dataset obtained from Gene Expression Omnibus was analyzed to identify ferroptosis-related differentially expressed genes. Enrichment analysis and protein-protein interaction network construction were performed to identify hub genes. Immune cells infiltration was analyzed and competitive endogenous RNA network was constructed. The diagnostic value of hub genes in septic ARDS was analyzed and the occurrence of ferroptosis and the expression of hub genes were detected. Traditional Chinese medicine targeting hub genes was predicted via SymMap database and was verified. Results: Sixteen ferroptosis-related differentially expressed genes were obtained, among which the top four genes ( IL1B , TXN , MAPK3 , HSPB1 ) were selected as hub genes, which may be potential diagnostic markers of septic ARDS. Immunoassay showed that sepsis-induced ARDS and hub genes were closely related to immune cells. The competitive endogenous RNA network showed 26 microRNAs and 38 long noncoding RNA. Ferroptosis occurred and the expressions of IL1B , MAPK3 , and TXN were increased in septic ARDS mice and LPS-challenged human pulmonary alveolar epithelial cells. Sea buckthorn alleviated septic lung injury and affected hub genes expression. Conclusions: Ferroptosis-related genes of IL1B , MAPK 3, and TXN serve as potential diagnostic genes for sepsis-induced ARDS. Sea buckthorn may be therapeutic medication for ARDS. This study provides a new direction for septic ARDS treatment.
Copyright © 2024 by the Shock Society.