Supporting bee populations is essential considering threats posed by human activities like pesticide usage and habitat destruction. However, the current methods for monitoring and analyzing beehives and their surrounding environments are invasive, complex, and time-consuming. These methods often rely heavily on laboratory analyses, making them difficult to implement independently in the field. This study explores the application of portable membrane inlet mass spectrometer (MIMS) for noninvasive hive analysis, demonstrating its ability to detect various compounds indicative of hive conditions and environmental stressors. In addition to the expected compounds found in beehives, such as α-bergamotene, hexadecanoic acid, heptadecane, hexadecanamide, α-bisabolol-, 9-octadecenamide, (Z) - , and benzaldehyde, unexpected compounds, pollutants, like indane (polycyclic aromatic hydrocarbon) and carbofuran (pesticide), were also detected. The MIMS detection method provides rapid, accurate, and real-time results, making it suitable for preventive measures against bee diseases and integral to environmental biomonitoring. This integration of technology represents a significant advancement in bee conservation efforts, offering hope for the future of both bees and ecosystems.
Keywords: Biomonitoring; Environment impact; Honeybee; MIMS; Pheromones; Portable mass spectrometry method.
© 2024. The Author(s).