Revealing the Impact of Aging on Perovskite Solar Cells Employing Nickel Phthalocyanine-Based Hole Transporting Material

Adv Sci (Weinh). 2024 Nov;11(41):e2405284. doi: 10.1002/advs.202405284. Epub 2024 Sep 16.

Abstract

The enhancement of the photovoltaic performance upon the aging process at particular environment is often observed in perovskite solar cells (PSCs), particularly for the devices with 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM). In this work, for the first time the effect of aging the typical n-i-p PSCs employing nickel phthalocyanine (coded as Bis-PF-Ni) solely as dopant-free HTM is investigated and as an additive in spiro-OMeTAD solution. This study reveals that the prolong aging of these devices at dry air condition (RH = 2%, 25 °C) is beneficial for the improvement of their performances. Various bulk and surface characterization techniques are utilized to understand the factors behind the spontaneous efficiency enhancement of the devices after storage. As a result, the changes in properties of the Bis-PF-Ni layer are observed and at perovskite/Bis-PF-Ni interface, which ultimately improves the charge transport and reduces non-radiative recombination. In addition, the devices with Bis-PF-Ni HTM reveal enhanced long-term ambient and thermal stability compared to the PSCs based on doped spiro-OMeTAD.

Keywords: aging stability; efficiency; hole transporting material; metal phthalocyanine; perovskite solar cells.