Purpose: To date, approximately 1400 inherited metabolic disorders (IMDs) have been described, some of which are treatable. It is estimated that 2% to 3% of live births worldwide are affected by treatable IMDs. Roughly 80% of IMDs are autosomal recessive, leading to a potentially higher incidence in regions with high consanguinity.
Methodology: The study utilized genome sequencing data from 14,060 adult Qatari participants who were recruited by the Qatar Biobank and sequenced by the Qatar Genome Program. The genome sequencing data were analyzed for 125 nuclear genes known to be associated with 115 treatable IMDs.
Results: Our study identified 253 pathogenic/likely pathogenic single-nucleotide variations associated with 69 treatable IMDs, including 211 known and 42 novel predicted loss-of-function variants. We estimated that approximately 1 in 13 unrelated individuals (8%) carry a heterozygous pathogenic variant for at least 1 of 46 treatable IMDs. Notably, phenylketonuria/hyperphenylalaninemia and homocystinuria had among the highest carrier frequencies (1 in 68 and 1 in 85, respectively).
Conclusion: Population-based studies of treatable IMDs, particularly in globally under-studied populations, can identify high-frequency alleles segregating in the community and inform public health policies, including carrier and newborn screening.
Keywords: Carrier frequency; Inbreeding coefficient; Inherited metabolic disorders; Middle Eastern population; VUS reclassification.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.