Visual analysis on ferroptosis and its cross-talk to coronavirus disease 2019 (COVID-19)

Heliyon. 2024 Sep 7;10(17):e37617. doi: 10.1016/j.heliyon.2024.e37617. eCollection 2024 Sep 15.

Abstract

Background: Ferroptosis is a new type of programmed cell death. Although ferroptosis has been studied in various aspects, there has been no visual analysis of ferroptosis in coronavirus disease 2019 (COVID-19) to date. It is still a global health concern of the COVID-19 pandemic worldwide, three years after its outbreak. Yet the emergence of the mutant strain Omicron has caused a fourth wave of infections in many countries. The pathogenesis of COVID-19 is still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics.

Methods: For this study, CiteSpace 6.2 R4 software was used for bibliometric and visual atlas analysis of ferroptosis-related research, and the Genecards database was used to mine ferroptosis and COVID-19-related genes.

Results: We found increasing studies about ferroptosis. China and the United States have demonstrated robust scientific innovation over recent years, with extensive collaboration between their institutions and authors. Ferroptosis and COVID-19 were seen to have 13 shared genes, which may be new targets for the treatment of COVID-19 in the future. Most of the shared genes are enriched in tumor necrosis factor (TNF) pathways. The majority of those genes are up-regulated under the cellular response to oxidative stress. Genes including Tumour necrosis factor (TNF), RELA proto-oncogene (RELA), Activating transcription factor 4 (ATF4), Cytochrome b-245 beta chain (CYBB), Jun proto-oncogene (JUN), Mitogen-activated protein kinase 1 (MAPK1) and Heme oxygenase 1 (HMOX1), maybe a breakthrough for ferroptosis and COVID-19. Whilst previous research has shown there to be a relationship between ferroptosis and COVID-19, the specific role of ferroptosis remained unclear. Our study aimed to analyze the research status of ferroptosis and its relationship with COVID-19, to provide a useful reference for further prevention and treatment of COVID-19. Overall, uncovering the role of ferroptosis in SARS-CoV-2 infection is important for the development of new treatment strategies for COVID-19.

Keywords: Bibliometric; COVID-19; Citespace; Ferroptosis; Visual atlas.