Addressing global challenges in wound management has greatly encouraged the emergence of home diagnosis and monitoring devices. This technological shift has accelerated the development of new skin patch sensors for continuous health monitoring. A key requirement is the creation of flexible platforms capable of mimicking human skin features. Here, for the first time, an innovative, highly adaptable electrochemical biosensor with molecularly imprinted polymers (MIPs) is customized for the detection of the inflammatory biomarker interleukin-6 (IL-6). The 3-electrode gold pattern is geometrically standardized onto a 6 µm thick polyimide flexible membrane, an optically transparent, and biocompatible polymeric substrate. Subsequently, a biomimetic sensing layer specifically designed for the detection of IL-6 target is produced on these transducers. The obtained MIP biosensor shows a good linear response within the concentration range 50 pg mL-1-50 ng mL-1, with a low limit of detection (8 pg mL-1). X-ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations confirm the modifications of the flexible gold transducer. After optimization, the biosensing device shows remarkable potential in terms of sensitivity, selectivity, and reproducibility. Overall, the integration of a low-cost electrochemical sensor on biocompatible flexible polymers opens the way for a new generation of monitoring tools with higher accuracy, less invasiveness, and greater patient comfort.
Keywords: Interleukin‐6; biosensor; flexible gold transducer; molecularly imprinted polymers; polyimide substrate.
© 2024 Wiley‐VCH GmbH.