This study investigates the (longitudinal) thermodynamic and structural characteristics of single-file confined square-well and square-shoulder disks by employing a mapping technique that transforms the original system into a one-dimensional polydisperse mixture of nonadditive rods. Leveraging standard statistical-mechanical techniques, exact results are derived for key properties, including the equation of state, internal energy, radial distribution function, and structure factor. The asymptotic behavior of the radial distribution function is explored, revealing structural changes in the spatial correlations. Additionally, exact analytical expressions for the second virial coefficient are presented. The theoretical results for the thermodynamic and structural properties are validated by our Monte Carlo simulations.