CO2 electroreduction (CO2E) converts CO2 into carbon-based fuels and chemical feedstocks that can be integrated into existing chemical processes. After decades of research, CO2E is approaching commercialization with several startups, pilot plants, and large initiatives targeting different products. Here, we analyze the global efforts in scaling up CO2E, addressing implementation challenges and proposing methods for acceleration. We present a comparative analysis of key performance indicators (KPIs) between laboratory and industrial settings and suggest a stepwise technoeconomic analysis (TEA) framework, supported by industrial data, exploiting interactions within the academic and industrial communities. We identify the lack of systems-oriented standardization and durability as the main bottlenecks slowing down progress in the lab-to-prototype-to-market pathway of CO2E technologies. Inspired by electrolysis and fuel cell technologies, we outline protocols to advance fundamental research and aid catalyst development progress in performance, upscaling, and technology readiness level of CO2E.
© 2024 The Authors. Published by American Chemical Society.