Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

Adv Sci (Weinh). 2024 Nov;11(42):e2404682. doi: 10.1002/advs.202404682. Epub 2024 Sep 19.

Abstract

Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 °C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 µm, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future.

Keywords: LLZO; all‐solid–state batteries; ceramic composites; in situ synthesis.